Group Ring and Group Algebra

From Wikipedia we have for a ring \mathcal{R} and a group \mathcal{G} a new ring written as \mathcal{RG} that is defined on the functions \mathcal{G} \longrightarrow \mathcal{R} with finite support and addition and multiplication defined as follows.

    \[\sum\limits_{g \in \mathcal{G}} \phi_g g \ + \ \sum\limits_{g \in \mathcal{G}} \psi_g g \ := \ \sum\limits_{g \in \mathcal{G}} \left( \phi_g + \psi_g \right) g\]

and

    \[\sum\limits_{g \in \mathcal{G}} \phi_g g \ \cdot \ \sum\limits_{g \in \mathcal{G}} \psi_g g \ := \ \sum\limits_{g \in \mathcal{G}} \left( \sum\limits_{u,v \in \mathcal{G} | uv = g}  \phi_u \cdot \psi_v \right) g \ = \ \sum\limits_{g \in \mathcal{G}} \left( \sum\limits_{h \in \mathcal{G}}  \phi_{h} \cdot \psi_{h^{-1}g} \right) g\]

Here, \sum\limits_{g \in \mathcal{G}} \phi_g g stands for a (formal) sum of elements of \mathcal{G} with coefficients taken from the ring \mathcal{R}. This makes sense as long as the functions in question have finite support, i.e. \left| \left\{ g \in \mathcal{G} \left|\, \phi_g \neq 0 \right. \right\} \right| < \infty.

The group ring is written \mathcal{R}\left[ \mathcal{G} \right]. It is clear that the group ring is also a module over the ring \mathcal{R}. For an element g \in \mathcal{G} let us define the following mapping (action) on the group ring

    \[\Phi_g \,:\, \mathcal{R}\left[ \mathcal{G} \right] \ni \sum\limits_{h \in \mathcal{G}} \phi_h h \longmapsto \sum\limits_{h \in \mathcal{G}} \phi_{h} (gh) \,=\, \sum\limits_{h \in \mathcal{G}} \phi_{g^{-1}h} h \in \mathcal{R}\left[ \mathcal{G} \right]\]

This is nothing else but a representation of the group \mathcal{G} on the linear mappings of the group ring as a module.

If \mathcal{R} is a field the group ring is called a group algebra over the field. In this case the group action from above is nothing else but a representation of the group on the linear mappings of the group algebra as a vector space.

As an example let us investigate the (multiplicative) group of the n-th unit roots, \mathcal{G} \,:=\, \left\{ e^{\frac{2\pi i k}{n}} \left|\,k = 0, 1, \ldots, n-1 \right.\right\}. Then we have for an arbitrary ring \mathcal{R} an element of \mathcal{R}\left[\mathcal{G}\right]:

    \[r_0\,\mathbf{e}_0 + r_1\,\mathbf{e}_1 + r_2\,\mathbf{e}_2 + \ldots + r_{n-1} \,\mathbf{e}_{n-1}\]

with

    \[\mathcal{G} \ni \mathbf{e}_k \,:=\, e^{\frac{2\pi i k}{n}} \quad\text{and}\quad r_k \in \mathcal{R} \ \left(k = 0, 1, \ldots, n-1 \right) \ .\]

For a product of 2 elements we get

(1)   \begin{eqnarray*} \left( \sum\limits_{k=0}^{n-1} r_k\,\mathbf{e}_k \right) \cdot \left( \sum\limits_{l=0}^{n-1} q_l\,\mathbf{e}_l \right) \nonumber & = & \sum\limits_{k=0}^{n-1} \sum\limits_{l=0}^{n-1} r_k \, q_l \,\mathbf{e}_{k + l} \\ \nonumber & = & \sum\limits_{k=0}^{n-1} \left( \sum\limits_{j = 0}^{n-1} r_j\,q_{k-j} \right) \mathbf{e}_k \end{eqnarray*}

taking r_k = r_{k+n} = r_{k + 2n} = \ldots = r_{k-n} = r_{k - 2n} = \ldots and analogously for q_k. The coefficients of the product are the result of a convolution of the two n-element series (r_k) and (q_k).

 

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert